Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

Feng-Yi Xia, ${ }^{\text {a }}$ Xin-Hua Li ${ }^{\text {b }}$ * and Xin-Xiang Lei ${ }^{\text {b }}$
${ }^{\text {a }}$ School of Biological and Environmental, Sciences, Wenzhou Normal College, Zhejiang, Wenzhou 325027, People's Republic of China, and ${ }^{\mathbf{b}}$ School of Chemistry and Materials Science, Wenzhou Normal College, Zhejiang Wenzhou, 325027, People's Republic of China

Correspondence e-mail: lixinhua01@126.com

## Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
$R$ factor $=0.034$
$w R$ factor $=0.108$
Data-to-parameter ratio $=14.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

## (2,2'-Bipyridine)bromodiimidazolecopper(II) bromide

The title compound, $\left[\mathrm{CuBr}\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right] \mathrm{Br}$, consists of bromodiimidazole( $2,2^{\prime}$-bipyridine)copper(II) cations and bromide anions that are linked by hydrogen bonds into a network structure. Two imidazoles, a 2,2'-bipyridine and a bromide anion are coordinated by the Cu atom, whose geometry is distorted towards octahedral because of the second bromide anion.

## Comment

Much interest is focused on the synthesis of coordination polymers (Carlucci et al., 1994; Munakata et al., 1999; Hirsch et al., 1997; Hoskins \& Robson, 1990); occasionally, the products are not the expected compounds. In the present study, the title compound contains two imidazole molecules that come from the decomposition of the starting $1,1^{\prime}$-carbonyldiimidazole ligand. The Cu atom of the $\left[\mathrm{Cu}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{2} \mathrm{Br}\right]^{+}$ cation is five-coordinated by the two imidazole molecules, a $2,2^{\prime}$-bipyridine and a bromide anion; the geometry is distorted towards octahedral, as the second bromide anion is 3.324 (4) A away. The cations and anions interact through N$\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds involving the imidazole, generating a three-dimensional network structure (Table 2).

(I)

## Experimental

Copper bromide ( $0.5 \mathrm{~g}, 2 \mathrm{mmol}$ ) was dissolved in water ( 10 ml ) and the solution was mixed with a dimethylformamide solution ( 10 ml ) of 2, $2^{\prime}$-bipyridine ( $0.3 \mathrm{~g}, 2 \mathrm{mmol}$ ), terephthalic acid ( $0.4 \mathrm{~g}, 2 \mathrm{mmol}$ ) and $1,1^{\prime}$-carbonyldiimidazole ( $0.3 \mathrm{~g}, 2 \mathrm{mmol}$ ) at room temperature. The reaction mixture was filtered; blue prism-shaped crystals separated from the solution after about three months.

Received 17 November 2004 Accepted 22 November 2004 Online 27 November 2004


Figure 1
ORTEPII (Johnson, 1976) plot of the title compound, with the atom numbering, showing $50 \%$ probability displacement ellipsoids.

## Crystal data

$\left[\mathrm{CuBr}\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right] \mathrm{Br}$
$M_{r}=515.71$
Monoclinic, $P 2_{1} / c$
$a=13.121(5) \AA$
$b=8.731(3) \AA$
$c=16.205(6) \AA$
$\beta=97.560(6)^{\circ}$
$V=1840.2(11) \AA^{3}$
$Z=4$

## Data collection

Bruker SMART APEX areadetector diffractometer $\varphi$ and $\omega$ scans
Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{\min }=0.50, T_{\max }=0.82$
8504 measured reflections

## Refinement

## Refinement on $F^{2}$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.108$
$S=1.05$
3180 reflections
226 parameters
$D_{x}=1.861 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3180 reflections
$\theta=1.6-25.1^{\circ}$
$\mu=5.54 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Prism, blue
$0.25 \times 0.19 \times 0.15 \mathrm{~mm}$

3180 independent reflections
2536 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.028$
$\theta_{\text {max }}=25.1^{\circ}$
$h=-15 \rightarrow 10$
$k=-10 \rightarrow 10$
$l=-18 \rightarrow 19$

H-atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0650 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.54 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.38$ e $\AA^{-3}$

Table 1
Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

| $\mathrm{Br} 1-\mathrm{Cu} 1$ | $2.8189(10)$ | $\mathrm{Cu} 1-\mathrm{N} 2$ | $2.013(3)$ |
| :--- | :---: | :--- | :--- |
| $\mathrm{Cu} 1-\mathrm{N} 5$ | $1.991(3)$ | $\mathrm{Cu} 1-\mathrm{N} 1$ | $2.031(3)$ |
| $\mathrm{Cu} 1-\mathrm{N} 3$ | $2.002(3)$ |  |  |
| $\mathrm{N} 5-\mathrm{Cu} 1-\mathrm{N} 3$ | $90.96(13)$ | $\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 1$ | $80.01(13)$ |
| $\mathrm{N} 5-\mathrm{Cu} 1-\mathrm{N} 2$ | $169.17(13)$ | $\mathrm{N} 5-\mathrm{Cu} 1-\mathrm{Br} 1$ | $96.25(10)$ |
| $\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{N} 2$ | $95.70(13)$ | $\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{Br} 1$ | $93.75(10)$ |
| $\mathrm{N} 5-\mathrm{Cu} 1-\mathrm{N} 1$ | $92.28(13)$ | $\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{Br} 1$ | $91.83(10)$ |
| $\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{N} 1$ | $171.65(13)$ | $\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{Br} 1$ | $93.54(9)$ |

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~N} 4-\mathrm{H} 4 \mathrm{~N} \cdots \mathrm{Br}^{2}{ }^{\mathrm{i}}$ | 0.86 | 2.53 | $3.320(4)$ | 152 |
| $\mathrm{~N} 6-\mathrm{H} 6 \mathrm{~N} \cdots \mathrm{Br}^{\mathrm{ii}}$ | 0.86 | 2.45 | $3.254(4)$ | 156 |

Symmetry codes: (i) $2-x, \frac{1}{2}+y, \frac{1}{2}-z$; (ii) $x, y-1, z$.
H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of $0.86(\mathrm{~N}-\mathrm{H})$ and $0.93 \AA(\mathrm{C}-\mathrm{H})$, with $U_{\text {iso }}=1.2 U_{\text {eq }}$ (parent atom).

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXL97.

We acknowledge financial support by Wenzhou Normal College and the Education Office of Zhejiang province (No. 20040336 and 2003Z17) and the '551' Distinguished Person Foundation of Wenzhou.

## References

Bruker (2000). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Carlucci, L., Ciani, G. \& Proserpio, D. M. (1994). Chem. Commun. pp. 27552757.

Hirsch, K. A., Wilson, S. C. \& Moore, J. S. (1997). Chem. Eur. J. 3, 765-771. Hoskins, B. F. \& Robson, R. (1990). J. Am. Chem. Soc. 112, 1546-1551.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
Munakata, M., Wu, L. P. \& Kuroda-Sowa, T. (1999). Adv. Inorg. Chem. 46, 173-178.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

